Parallel Solutions of Multi-Stage Stochastic Linear Programs by
Interior-Point Methods

Joseph Czyzyk
Robert Fourer
Sanjay Mehrotra

Technical Report 94-77

Department of Industrial Engineering and Management Sciences

Northwestern University, Evanston, Illinois 60208-3119

August 1994

This work: has been supported in part by: National Science Foundation grants CCR-8810107 to
Sanjay Melirotra and DDM-8908818 to Robert Fourer; Office of Naval Research grant N00014-93-1-
0317 to Sanjay Mehrotra afid Robert Fourer; and a Department of Energy Computational Science
Graduate Fellowship to Joseph Czyzyk.

1. Introduction

In this paper, we demonstrate how interior-point techniques and parallel pro-
gramming methods can be used together to solve stochastic linear programs (SLP’s).
Linear programs (LP’s) are often used to model complex interactions since they are
relatively easy to understand and there are efficient methods for solving them. Just
as with any model, the quality of the solution can'be no better than the quality of
the input data. This holds true for linear programs as well and poses a significant
problem for many models. Consider, for example, a long-range planning problem.
The values of the problem data (cost of commodities, demand, inventory, etc.) for
the present time can probably be determined accurately. The information for future
planning periods, however, is not readily available and may need to be forecast.
Since the future is uncertain, making plans’based on one predicted instance of the
future may lead to suboptimal (even disastrous) results when the future events that
occur are dramatically different from the predicted event. Taking this uncertainty
into account is vital for wise planning. A stochastic linear program is a reformula-
tion of the standard linear program that takes the uncertainty into account. These
problems are typically large and, as a result, more difficult to solve.

The advent and development of parallel and supercomputers has made many
difficult problems computationally feasible. By using our algorithm it is possible to
partition the problem into subproblems of roughly equal size which can be computed
on separate processors of a parallel machine. The CM-5 is an MIMD machine
composed of many Sparc processors connected by control, data, and diagnostic
networks. We use up to 128 processors to solve our problems.

Lustig, Mulvey and Carpenter [13] discussed the use of interior-point methods
for solving stochastic linear programs. They experimented with the use of different
splitting techniques to eliminate the set of dense columns that occurs in the con-
straint matrix. Czyzyk, Fourer, and Mehrotra [6] extended their work to show that
the partial-splitting scheme may not always rediice the amount of work to solve the
problem but that the use of an augmented system approach limits the growth in
solution time to be linear in the number of scenarios included in the problem.

Others have implemented similar methods to solve stochastic linear programs
on paralle] machines. One method is to use Benders Decomposition (also called the
- L-Shaped method [16]) which decomposes the problem into a master LP and various
smaller LP’s. Birge [1] extended these ideas to the multi-stage case and devised the
nested decomposition method. Birge, et al. [3] implemented this algorithm on a
network of RS/6000 workstations. Another approach uses interior-point methods to
solve the problem. Birge and Holmes [4] use the decomposition method of Birge and
Qi [5] to solve the problems both with serial and parallel implefnentations. Their
approach factors a system of equations using a variant of the Sherman-Morrison-
Woodbury method. Although the method works well in most cases, they report
numerical instability for some problems. Jessup, et al. [11] use the Birge-Qi pro-
cedure in an implementation tailored for the iPSC/860 and CM-5. de Silva and
Abramson [7] decompose a system of equations for parallel factorization and use
an indefinite solver of Vanderbei and Carpenter [15]. They solve a set of financial
optimization problems on a 128-CPU Fujitsu AP1000.

The remainder of this paper discusses the formulation of stochastic linear pro-

grams and how their structure can be exploited in our method. Section 2 describes
the method, and Section 3 shows how we parallelize the method. Results from our
implementation using the CM-5 are presented in Section 4. In Section 5, we extend
our results to the multi-stage case and show how the same factorization procedure
can be used. We also present computational results in this case. We present our
conclusions in the last section.

2. Development / Background

Two-Stage Stochastic Linear Programs

The primal form of the linear program can’ be wr1tten as fo]lows

minimize Tz
subject to Az = b
z > 0

where z is a vector of decision variables that are linearly welghted by the elements
of ¢. Az =bis a set of constra.mts which the Va.rla,bles must meet along with being
non-negative (z > 0). ’ i

Some linear programs involve dec1s1ons that are made over a multi-period horizon
and are called multl-stage or mu1t1 perrod linear programs These problems are
and constraints which affect variables in adJommg penods The constraint matnx
of a multi-stage hnear program has a starrcase structure which is evident in the
problem formulati

min ez + ckzp
s.t. A11£II1 ; = bl
Anzy + Az = by
App-1zp-1 + Appzp = bp
g 2 0

Here P is the number of perlods in e‘model

We now consider the formulation of two-stage stochastic linear programs. We
wnte the two-stage LP as fo]lows to simplify notation:

mJn Tz + dTy

‘S.t. Ao.’ZI = b()
. Tz + Wy = b
z > 0
y 2 0

Here the ﬁrst stage problem data (Ag, ¢, bo) are assumed to be known with accuracy.
The second-stage problem data (T, W, d, b,) are uncertain and can be considered as

random variables. One method of modelling this uncertainty is to consider the
recourse problem.
The recourse process occurs in three stages:

1. The decision maker chooses a value of «, the first-stage decision variable (sub-
ject to Aoz = bg). This decision is made before any future second-period events
take place and so cannot anticipate any one future realization over another.

2. A random event occurs determining 7', W, d, and b;.

3. The decision maker chooses a recourse action y, weighted by the cost vector
d, which satisfies the constraint Tz + Wy = b;.

The goal is to minimize the sum of the first-stage costs plus the expected second-
stage cost of the recourse action. The recourse problem can be written as:

min; ¢z + E{Q(z,w)}
subject to Agz =D
z2>0

where Q(z,w) is the solution of:

min, d(w)T‘y:‘ |

subject to T(w)z + W(w)y = bi(w)

Here d,T,W, and b; can be thought of as functions of a random variable w.

The recourse problem can be written as a deterministic linear program if the un-
certainty in the problem can be discretized. This discretization can be performed by
considering the different possible future outcomes and enumerating them as scenar-
ios. The use of more scenarios will better model the uncertainty and provide a better
solution. We will see that more scenarios also requires more solution time. Given
N scenarios each with probability p; of realization, the deterministic equivalent can
be written:

min Tz + pgfy + peadye ... + pnakvk
s.t. Aoz > b
Tz + Win = b
Tpz + Wy = b
Tnz + Wnyn - = by
z > 0
Yi > 0

Notice that there is only one copy of «, the first-stage decision variable. This is
the result of the non-anticipativity requirement. On the other hand, note that there
is a different vector y; for each scenario. This is because each second-stage scenario
will have a different recourse action. The deterministic equivalent formulation will
be used to solve the recourse problem by using an interior-point method.

Interior-Point Method

We use a single-phase, predictor-corrector, primal—dua.l, path-following variant of
an interior-point method. The method is more fully described by Lustig, Marsten,
and Shanno [12] and is based on work by Mehrotra [14]. ’

In short, the method chooses an infeasible starting point and iterates through
the following steps until the primal and dual infeasibilities and the relative duality
gap are within a certain tolerance. ”

1. Compute primal and dual infeasibilities.

Compute the first derivative of thé trajectory.

Compute the centering paramqtéi'.» :
Compute the second derivative.
Compute a step length and search direction.
Compute step factor.

Compute new point.

® N > o ok W ®

Compute duality gap and objective valué_;

The most significant portion of the work for performing an iteration of the
interior-point method is determining the search direction. This requires the for-
mation of the augmented system

[(7e)E)G) e

and its factorization. Here A is the constraint matrix from the linear program,
D? is a diagonal scaling matrix which depends on the current iterate, and v and
w are appropriate vectors for the ;methbd which depend on the primal and dual
infeasibilities of the current solution. The factorization is performed using sparse
Bunch-Parlett factorization as described by Fourer and Mehrotra [9]. The algorithm
determines a pivot ordering for the matrix based on the sparsity pattern of the
matrix and numerical stability of the factors. From one iteration of the method
to the next the sparsity pattern of the matrix does not change but the entries in
the matrix D? do. ‘Even though the pivot ordering from previous iteration is not
guaranteed to be stable, we reuse the ordering until we determine that the factor
has become unstable by using a simple test. We have noticed that oftentimes it is
possible to use one or two pivot ordering to solve the entire linear program.

We choose to operate on the augmented system using a sophisticated indefinite
solver rather than forming the normal equations for use with a standard Cholesky
solver for a variety of reasons. Because the normal equations involve a matrix-matrix
transpose product, any dense column in the matrix causes the resulting system to
be completely dense. The columns of the constraint matrix associated with the
first-stage variables have entries in rows for each scenario. Although the columns
are not completely dense, the resulting system becomes significantly dense. This

5

increase in density causes the solution time to increase cubically as the number of
scenarios increases. A more complete discussion of these pomts can be found in our

paper [6].
Motivating Example

To motivate the steps of the factoring procedu’re?fhat we use, consider the solu-
tion of the following system of equations:

E, FT Y f
E, FzT § Y2 = fz
R F, G 1\ T \ g

If £, and E; are mvertlble, Gauss1a,n ehmmatlo, ":ca.n be performed by multiplying
the first row by —Fy ET! and adding into the third- row d'31mlla,rl’y for the second
row. This results in the following system: '

E,

b

f2
9 vzz=1FE—1f1

where Gt =G -3, FE 'FT and gt =g - z,_l F.E7'f;.
The system
Gtz =g7

is solved for z enabhng 1 a "d Y2 to be computed by solving

n fméF%)
y2 = E7Y(fy — Ffz)

We w111 use a similar process to factor the matrix when solving for the search
directions. r

Factorization

If we form the augmented system of equations for the two-scenario problem, we
see that there is special structure of which we can take advantage.

[D} AT Tf T T
D? wi
D} Wi
| Ag
T W, 0
L T W, k

The matrix can be partitioned by scenarios and reordered to exploit the struc-
ture. We will take advantage of the structure in our factorization routine and
eventually distribute the factorization across parallel processors. Here is shown the
reordered augmented system for a two-scenario problem: : :

- D WT 1 0. T
Wi 0 1T
D: Wil o
W, 0 | Ty
0 Tf | o TF[D: Af
| Ay 0

Notice that each block on the diagonal is a smaller augmented system.
We can write the complete augmented system in the following compact form:

E1 F1T h fl
E2 F2T Y2 = f2
F1 F2 G z g
p? wr 0 17 D§ Af
where F; = W, 0 :| ,Ft—_l: 0 0 ,a:Il_d‘G—' | Ao 0

In the example in the previous section, we assumed that the matrix £ was
invertible in order to perform Gaussian elimination. We will be performing similar
steps and inverting a matrix of the following form:

D* wT

w0 |
This system (a subsystem of the complete a,ugmenféd system) is not guaranteed to
be invertible. For the discussion here, we will assume that the system is invertible
and consider the singular case in the following section. The sparse Bunch-Parlett
factorization method that we use utilizes standard 1 x 1 pivots along with 2 x 2
pivots where necessary to maintain numerical stability. This results in a system of
the following form:

LBIT

where L is a triangular matrix and B ig a tridiagonal matrix. It is interesting to
note that for some matrices, it is not ﬁecessary to use 2 x 2 pivots and so B is a
simple diagonal matrix.

The factorization proceeds as follows:

1. Perform sparse Bunch-Parlett factorization of E; forming I; B; LT fori = 1,2.
2. Update G such that
Gt = G-Ti RE'FT
= G-YL F(LBLT) T F
= G-TL RLTBILT'FT
= G-Tk, (LFF) B (17FF)

and update the right-hand side accordingly.

3. Solve the resulting system Gtz = gt.

4. Given z, solve for y; and y, as follows:
1=
Y2 =

fi=Flz
H(fa- FT

Because the scenarios of the problem have much in common, it is easy to take
advantage of the special structure of these problems. First of a.ll, the zero-nonzero
structure of all the T matrices is the same; this is true for the W matrices as well.
This similarity extends to the structure of the entire augmented system so that only
one copy of the structure of T', W, and the augmented system needs to be stored. It
is also possible in many instances to share the factorization pivot ordering among
the scenario subproblems. Because the matrices F are such that the matrices on

the second row are 0, all updates into G actually only update the D} submatrix;
the matrix Ag of G is unchanged.

Unstable Factorizations

By partitioning the matrix by scenarios so that it can be factored by blocks, we
have imposed a pivot ordering on the system. Even if the entire system is sta.ble,
there is no guarantee that each subsystem on the diagonal can be factored. Although
the result is not as clean as in the stable case, such unstable factorizations can be
handled by our method.

The matrix to be factored is

E, FT

Ef Ff
R F G

where F;, F;, and G are defined as before. The ﬁrst step of the factorization is to
decompose E; into LDLT where L is lower tnangula,r and D is tridiagonal. If it is
not possible to pivot on all the diagonal entries, it may be possible to include those
pivots (along with the corresponding rows and columns) with the matrix G yet to
be factored.

More specifically, consider the system

E FT
F G
where F cannot be completely factored. Since part of the matrix E can be factored,
we will implicitly permute the matrix and call that part E;;. The resulting system
has the following form:
E. E} FT
Exn EIL, FI
R K G
Here we have partitioned the matrix F to correspond with the reordering and par-
titioning of E. This is another augmented system if we consider

E £
F G

where £ = Eyy, F = [Exn], and G = [B F3 .- In essence, the unstable

2 B G
portion of the matrix E (along with rows of F and columns of FZ) are appended to
the original G matrix. If there is more than one unstable matrix E; on the diagonal,
the matrix G may include additional rows and columns from any or all of the E
matrices. ‘

3. Parallel Implementation

The Gaussian elimination sample problem in the previous section can be easily
parallelized. By storing Ey, F1, and fyon processor 1 and E,, F,, and f, on processor
2, the computation of F; E; 'IFT and F, -1 fi can be performed concurrently. A third
processor stores G and g and receives the update ma.tm es.and right-hand side as
messages from the first two processors. The third processor computes the value of
z and sends it to the other processors which then compute y; and y;. Computing
the solution of z on the third processor is inherently serial, and the other processors
are forced to remain idle until z has been computed.

Figure 3-1 shows the step-by-step procediire with a- schematlc diagram. The
circles represent the processors and associated data. The lines with arrows represent
communication between processors.

' | Compute E; on each processor.
Compute F;A7'FT and FA7'fi on each
processor.

7. Send matrix and vector to Processor 0.
Receive matrices and vectors e
from other processors.
Subtract matrices from G.
Subtract vectors from g. .
Solve Gz = g.
_§end z to other processors.

Receive ¢ from Processor 0.
Compute y; = Ef!(f; — FTz).
Flgure 3-1. Processor schematw for example problem

In the sa.me way, the- factonza,tlon of the augmented system for the stochastic
linear program can be ‘partitioned across the processors. In fact, it is possible
to distribute all the cqmputatlon for the problem across processors. Matrix and

vector addition, matrix-vector products, vector dot products, the minimum-ratio
test, and all the other operations can be performed in parallel. How we perform
these operations depends on how the problem is laid out.

We seek to lay the problem out so that the second-stage scenarios are distributed
evenly over the processors. For ease of discussion, we assume that the number of
scenarios is a multiple of the number of processors used to solve the problem. If there
are 3,200 scenarios, then each processor will perform computations for 100 scenarios
on a 32-processor machine. In addition, one processor (processor 0) will perform
the computation for the first-stage along with the computatlon for its allocation of
the second-stage scenarios.

Each processor reads in the entire multi-scenario problem. After determining
for which scenarios each processor will compute, only the data for those scenarios
is retained. In the 3,200-scenario case, each processor stores information for each of
its 100 scenarios. Processor 0 will also store the Ag matrix and other information
for the first-stage. The information that each processor has includes the matrices T
and W, the right-hand side b, the cost vector ¢, and the various other vectors that
are needed by the method. All of the data pertaining to a scenario remains local to
the processor.

Each processor runs the same program although the processors execute different
instructions. The program is er_tten so that a processor can use its processor number
as a test to determine which portions of the code should be executed. The factor-
ization process proceeds similarly to the example above. Every processor (including
0) executes the factorization of E;, the matrix update (L FT)B7Y(L~1FT)T, and
the vector update. The two updates are sent to Processor 0 via message-passing
routines. Processor 0 receives the updates from all of the processors and computes
the solution z of the system Gtz = g+. Processor 0 sends z to the other pro-
cessors which have been idle waiting for the solution from Processor 0. All of the
computation in the interior-point method occurs in this manner. Processor 0 sends
and receives messages from all the other processors. The other processors do not
explicitly communicate with one another. Notice that since each processor is per-
forming the computation for more than one scenario, an efficient implementation
can take advantage of the common structure of the different matrices and a common
factorization routine.

Since communication is an expensive operation in a parallel computer, reducing
communication can greatly speed up a routine. The algorithm as described above
has Processor 0 receiving update matrices and vectors from each different scenario.
Since many different scenarios reside on a processor, it makes sense to have each
processor accumulate the updates for its set of scenarios and then send one update
to Processor 0. This can be shown schematically as in Figure 3-2.

The dashed circles represents the accumulation of matrices and vectors within
the processor. The dashed lines represent “communication” within the processor
to perform the accumulation. As a result, the amount of communication required
for the method is a function of the number of processors rather than the number of
scenarios in the problem.

4. Computational Results

10

First Stage Second Stage

\
Processor
7
7 3
4
\/, ~0v
v
Processor 1
\. W,
4 N\
A
L
%
- N
Processor 2 ‘O
L Y

Figure 3—2. Schematic showing processor communication for solving two-stage stochastic
linear programs .

Our program was written in C and utilized CMMD (the Connection Machine’s
message passing library) routines for all inter-processor communication. The pro-
grams were run on NCSA’s CM-5 in Champaign, Illinois using 32, 64, or 128 pro-
Cessors. ’

We report results for solving problems with varying numbers of scenarios. The
problem SCSD8 is taken from the NETLIB [10] testset and made a stochastic lin-
ear program by considering different elements of the right-hand side vector to be
random. We created random problems with between 32 and 2560 scenarios.

The original problem, SCSD8, has 70 variables and 11 constraints in the first
period. There are 140 variables and 20 constraints in the second. Since the second-
stage variables and constraints are duplicated for each scenario included in the
problem, the number of rows and columns increases with the number of scenarios.
Table 4-1 shows the total number of rows and columns in the problems that we
solved. e S

Note: The factorization routine that has been used is not a complete implemen-
tation of the sparse Bunch-Parlett factorization. The current preliminary routine
merely performs 1 X 1 pivots along the diagonal. When an unstable pivot occurs,
the program merely stops execution and prints the current result. Although this
factorization routine is not robust, many of the stochastic linear programs were
solved to optimality. For one problem, SCSD8, all of the problems generated were
solved to optimality. Although the following results cannot be used to comment
on the robustness of the solutions, these results do show that the problems can be
decomposed for factorization and that parallel speedups are possible.

In Figure 4-3 we have plotted the time per iteration against the number of
scenarios per processor. Note that the solution time grows linearly with the number

1

Scenarios Rows Columns
32 651 4550
64 1291 9030

128 2571 17990
160 3211 22470
320 6411 44870
640 12811 89670
1280 25611 179270
1600 32011 224070
1920 38411 268870
2560 51211 358470

Table 4-1. SCSD8: Problem dimensions for two-stage plfoElems

of scenarios per processor. The use of the augmented system results in such linear
growth. Had the normal equations approach been used, the solution time would
have grown cubically in the number of scenarios. Note also that the lines for 32,
64, and 128 scenarios are parallel; each individual processor does the same amount
of work whether we are using a 32, 64, or 128 processor machine. The intercept
of the plots is different for each size of machine since ther‘e_,_ls more communication
overhead for larger machines. The dlﬁ'erenc in h ‘y-mter__ pt is a measure of the
communication overhead. g N :

The solution time per 1terat10n is composed of three dlStlnCt components:

1. Computation time for second-perqu_s_penanos,
2. Communication time from all procesSérs to Processor 0, and

3. Computation time_,for first-period solvesn;a‘:‘nd ‘other overhead.

Let: ‘
T = Tatal solutlon time per iteration .
s = Number of second- stage scena.nos
p = .Number of processors

Then s;/p is the number of second-stage scenarios per processor. The total
solution time per processor can then be written

T

8y
=a~—=+bp+ec
D D

where a is the time for each processor to perform the computation for one of its
scena,nos, b is the. amount of time for Processor 0 to communicate with another
processor, and ¢ is the amount of time for Processor 0 to perform the necessary
first-stage computations serlally
Using simple linear regressmn, it is easy to determine the values for the constants
‘a,b and c. '

a b ¢
0.450 0.0336 0.207

T = 0.450% +0.0336p + 0.207

12

Scenarios Iterations Objective Rel. Dual Primal Dual Time

Value Gap Inf o Infi (secs)

32 processors ' VAL
32 9 21.08065 1.45e-13 183e—10 1.33e-16 15.35
160 11 20.92091 3.95e-14 2.78e-10 1.44e-16 38.01 |
320 13 20.90149 4.48e-13 3.55e-13 2.10e-16 74.20 |
640 12 20.89766 2.17e-10 . 5.49¢-10 2.0le-16 123.12
1280 13 20.88141 1.10e-11 = 1.25¢-13 2.75e-16 251.88
1600 13 20.88618 4.72e-10 5.49e-11 7.83e-16 314.21
2560 14 20.90191 3.56e-11 1.76e-12 '308e—16 518.50

64 processors
64 9 2097917 8.07e-14 9.45e-10 201e-16 25.92
320 13 20.90149 8.89e-14. . 3.55¢-13 1.89¢-16 60.20
640 12 20.89766 2.17e-10 = 549e-10 2.12¢-16 82.42
1280 13 20.88141 1.66e-12 1.25e-13 . 197e-16 145.96
2560 14 20.90191 7.79e-15 1.76e-12 3.47e-16 288.75

128 processors
128 10 20.92922 50le-11 3.98¢-08 3.30e-16 50.04
640 12 20.89766 2.17e-10 5.49¢-10 3.43e-16 80.82
1280 13 20.88141 1.04e-11 1.25e-13 2.67e-16 116.34
1920 13 20.89127 . .4.82¢-14 . 1.16e-11 2.61e-16 146.90

2560 14 20.9019 4;54e-15 - 1.76e-12 ‘:.}.348e-16 187.60

Table 4-2. Solution times for two-stage problerrflfij

R? = 0.999 for this model so this equation‘ is an excellent fit to the data.
If
0.450‘;72 > 0.0336p
or

p2

‘ 13. 39’

the first term (second stage computatlon tlme) dominates the solution time. We see
then that the solution time will approximately double as the number of scenarios
in the problem doubles Also, as long as the above condition is met, doubling the
number of processors W1]l ha.lve the solutlon time.

S >

5. Extensmns for the Multl-stage Case

Our solution method for two-stage stochastic linear programs extends nicely to
the multi-stage case. We will first introduce multi-stage problems and then describe
the changes needed in the factorization method.

We will consider a three-stage problem since considering additional stages is

13

scsp8

40 T T T T T T T
32 procs. —o—
64 procs. ~+-_1

35 | 128 procs. @ J

Time (secs.) / iteration

) 1 1 1 1 1 1 L

0 10 20 30 40 50 60 70 80
Scenarios per Processor)

Figure 4-3. Solution times for two-stage problems

trivial. We first consider the three-stage ling!ar program:

min Tz + d2y2 + dsys
subject to Aoz : = by
T1$ + lez ‘ = b1
Toys + Ways = b
z > 0
vi =2 0

Multi-stage stochastic linear programs are similar to the two-stage problems in
that we are trying to account for uncertainty in the problem data. The two-stage
case assumes that all future information will be revealed at one point in the future
(step 2 of the recourse process). In contrast, the multi-stage process has the future
being revealed at separate points in time and allows for recourse actions at those
times. The process.occurs as follows:

1. The decision maker chooses a value of z, the first-stage decision variable (sub-
ject to Apgz = bo). This decision is made before any future second-period events
take place and so cannot anticipate any one future realization over another.

2. A random event occurs determining Ty, Wy, d; and b;.

3. ‘The decision maker chooses a recourse actions y2 weighted by the cost vector
dy, satisfying the constraint Thz + Wiy, = by.

4. A random é\}enf churs determining T, W5, d3 and b,.

14

5. The decision maker chooses a recourse actions y; weighted by the cost vector
ds, satisfying the constraint Toys + Ways = ba. '

As in the two-stage case, we can write the determlmstw equivalent. This is-a

three-stage problem with two scenarios in both. the second and third stage.

min Tz + parddyya + pazdiayes + p31d31(y31 o+ yas) 4 paadiy(ysz + Y34)

st Aow
Tz + Wnaya
Tayn + Waya
To2ynn +
T2z +

Wa2ys2
. Wiy
Ty + Woayss
- Togyar +

 Ways =

Notice that there is one copy of z since the first-stage decision ¢annot anticipate
any one future realization over another. There are two 2nd-stage variables, y21 and
Y22, since this decision is made after Ty1, Wiy, byy or T2, W2, b12 have been revealed.
This matrix has an arborescent structure which we will exploit.

We form the augmented system as in the two-stage case ‘and can reorder it for
factorization. The resulting system has the follcwmg structure

D3, W§
Wa 0 Ty
DI, Wi
Wi 0 To
T3 T, D} Wi
.. Wn 0 L T
. D3 W’ﬂ
Wa O Ty
D, wj
Wa 0 Tp
TH TH D3 Wi
Wi 0 | Ty
TL | D A
Ay 0

The matrix has been pa.rtltloned 50 that there are two complete two-stage aug-
mented systems on the diagonal. That is, there are two smaller augmented systems

within the larger system and within those two are two smaller systems each.
- Let us write the above system as

By |
Ey FL
Fu Fi; Gpo
Exn F3
Ey FL
Fn Py Gy
| 3 F,

15

Y11
Y12
T1
Y21

Y22
T2

fi2
()1
fa
fa2
g2

fir)

E, T 1 ".>f1
E, Ff z | =| f2
F1 Fz G z g

Here we see that adding more stages to the problem merely nests augmented
systems within other augmented systems. The moré stages that you consider, the
more nesting that results.

The factorization process is identlca,l on a macro level. The matrices E; are
factored and updates of (L7 F;)T B (L 71F;) are subtracted from G and similarly
for g. The vector z is determined by solving Gtz = g+ Given z, the vectors
y1 and y; can be easily determined. Although these steps remain the same, the
process of factoring E; is more complicated. In the two-stage case, E; has a simple

2 T i
augmented structure { €V Wg];however, m--th.,ev thr stage caso,:,.lt has an entire
two-stage structure embedded within it E, Ff |. As aresult, factoring E;

R F, G
is to complete the factorization process for the two- stage case.
The entire factorization process happens as follows """

1. Factor the augmented systems FEy;, E]g,Egl, and E22

2. Given the factors of E; and Eqg, upd'a,te:

Gii- = G]_ - F11E111F1 - F‘12E Fl2
= G1 - (Ln Fll) Bu (Ln -Ell) : (L11F12) B121(L1_21F12)

T : F21E211F21 -— F22E2 1F22
:,= Gy - (L211F21)TB21 (Ln F21) - (Lzz F22) 3221 (Lz 1F22)

We have now. colla.psed the thlrd stage into the second, and the resulting
system now ;_esembles a two-stage problem.

3. Factor G{ into L1 By L:It'

4. UP:d_ate:.; e
Gr = F\G'F] - RG'F]
= G — (IT'R)TB{YIT'R) - (L7'R)TB;Y(L7'F)
5. Solve Gtz = g* for z.
6. Given z, compute:

21 = (GY)"}gf - F{ =)
23 = (G3)7gf - Fiz)

16

7. Given z; and z,, compute

y11 = EQN(fi1 — Fﬂm) o

Yz = Ele(flz - F121:1)) BT
Yor = E2_1 (for = F21-'171)

Y22 = Eg; (fzz - Fzzzl)

Notice that this process can be pa,rntl_oned a.crqss processors just as with the
two-stage problem. Figure 5-1 shows this schematically. In order to evenly divide
the scenarios across the processors, we take into account the umber of second- and
third-stage scenarios and distribute the scenarios so that each processor performs
approximately equal amounts of computation. Notice that there is no additional
inter-processor communication; commumcatlon:': ccurs between Processor 0 only for
steps 4, 5, and 6 in order to compute the first- st'_g Varlables

First Stage Second Stage Th1rd Stage

Processor 0

A

- Processor 1

& 3 ' J

Figure 5-1. Factorization process for three-stage problems

Table 5-2 shows the results for solving various three-stage problems. The number
- of second -stage scenarjos varies between 32, 160, and 320 on a 32-processor machine
and 64 and 640 on a 64-processor machine. The number of third-stage scenarios
varies among 1, 10 100, and 500 scenarios. The largest problem includes 320 second-
stage scenarios and a total of 32,000 third-stage scenarios. Table 5~3 shows the total
number of rows and columns in the problems that we solved. Figure 5-4 plots these

17

results. The results for the 32-processor machine are on the left, and the 64-processor

machine on the right.

,_RVel. Dual

2nd-stage 3rd-stage ‘Total Iters Objective Primal Dual + Time
Scenarios Scenarios Scens Value Gap Inf. Inf. = (secs)
32 processors. e
32 1 32 9 21.080650: .. 5:84e-13 1.83e-10 1.64e-16 25.80
32 10 320 9 24347310 " 1.07e-13 2.77e-10 1.07e-10 40.36
32 100 3200 11 24.052770 4.8le-12 3.52e-12 4.17e-11 234.50
32 500 16000 12 24.027960 670e-12,,._2.14e-11 1.12e-11 1140.24
160 1 160 11 20920910 3.10e-14 2.73e-10 1.92e-16 94.58
160 10 1600 10 24:187580 7.68e-12 2.97e-09 1.16e-16 169.79
160 100 16000 11 23.893030 2.10e-11 8.31e-10 7.78e-12 1112.34
320 1 320 13 20.901490 5.40e-13 3.55e-13 1.90e-16 206.37
320 10 3200 11 24.168160 = 6.03e-09 8.65e-09 2.14e-16 364.09
64 processors: o
64 1 64 9 20979170 2.59e-14 9.45e-10 1.97e-16 35.15
64 10 640 9 24.245830 8.26e-09 1.54e-07 7.69e-09 51.03
64 100 6400 11 23.951290 1.45e-12 2.61e-12 4.35e-12 242.04
64 500 32000 12 23.926480 6.30e-12 1:49-11 5.0le-12 1143.17
320 1 320 .. 13 20901490 = 9.87e-13 8.55e-13 2.27e-16 126.80
320 10 L1124, . 6.03e-:09 B.65e-09 1.77e-16 204.26
320 100 32000 13 23. 873610 2.00e12 1.0le12 2.61e16 1299.20
640 1 640 12 20.897660 2.17e-10 5.49e-10 2.29e-16 207.38
640 10 6400 117 24.165370 8.48¢e-10 3.52¢-09 2.05e-16 385.53
Table 5-2. Solution times for three-stage problems
2nd-Stage 3rd-Stage Rows Columns
Scenarios Scenarios
32 el 650 4550
32 10 3530 24710} o
32 100 32330 2263101
32 500 160330 1122310 |
64 Sl 1290 9030
64 0 7050 49350
64 100° - 64650 452550,
64 500 320650 = 2244550
321077 22470
10 17610 123270
: ",5_"",1,61610 1131270
6410 44870
35210 246470
320 100 323210 2262470
640 1 12810 89670
640 10 70410 492870

Table 5-3." Problem dimensions for SCSD8 - 3 stages

We can again use simple linear regression to analyze the time to compute one
iteration of the interior-point method. The solution time is now composed of four

distinct components:

18

Three-Stage Problems (SCSD8)

Third-stage scenarios

120

100 +

80

60 4=

40 T

20 "

Solution Time / lteration (secs.)

a2 160 : 320" 64 320 640
a2 , 64

Second-Stage Scenarios
Figure 5—4. Solution times for three-stage problems

1. Computation tlme for second-period scenarios,

2. Computation time for third-period scenarios,

3. Communi;ation time from all processors to Processor 0, and
4

. Computation time for first-period solves and other overhead.

Let: : e 4
T = Total solution time per iteration
83 = Number of second-stage scenarios
83 = -Nilﬁxbéi‘ of third-stage scenarios per second-stage scenario
p = Number of processors

Then s;/p is the number of second-stage scenarios per processor, and sg83/p is
the total number of thlrd-st:age scenarios per processor.
The total solution time per processor can then be written

where a is the time for each processor to perform the computation for one of its
second-stage scenarios, b is the time to perform the computation for a third-stage
scenario, ¢ is the amount of time for Processor 0 to communicate with another

19

processor, and d is the amount of time for Processor 0 to perform the necessary
first-stage computations serially.
Given the data in Table 5-2, these coefficients can easily be determined.

a b ¢ d
1.33 0.184 0.027 0.489

and 58
T = 133—+0184-253+0027p+0489

R? = 0.999 for this model so this equation too provides an excellent fit to the data.
If

1337+ 0.'1.84531-? > 0.027p

or .
32(49.25 + 6.8133) > p,

then the computation time for the scenarios dominates the cdmmunication time. If
the computational time dominates, then doubling s; will double the solution time.
Also if 6.81s3 >> 49.25, doubling s3 will approximately double the solution time.
Similarly, doubling the number of processors Wﬂl apprommately halve the solution
time.

6. Conclusions

In this paper, we have described how the structure of a multi-stage stochastic
linear program can be exploited by using an interior-point algorithm on a parallel
computer. We have Successfully solved two-stage problems containing up to 2,560
scenarios (51,211 rows and 358,470 columns) and three-stage problems containing
up to 640 second—sta,ge scenarios and 100 th.u'd—stage scenarios (the largest being 320
second-stage scenarios and 100 third-stage scenarios with 323,210 rows and 2,262,470
columns) within reasonable amounts of time.

Our routine works well.w1th increasing numbers of scenarios; in fact, the effi-
ciency of the algorithm increases with the number of scenarios per processor. This is
important since one can better model random distributions of the problem data us-
ing more scenarios. The algorithm handles multiple time periods in the model. This
is 1mporta.nt since many problems pla.n over a multi-year time horizon. The ability
to plan over many perlods leads to more robust solutions. Finally the algorithm
works with additional processors so that it can take advantage of more powerful
machines as they may become available.

20

References

(1]

[2]

[3]

[6]

[7]

(8]

[9]

J. R. BIRGE, 1985. Decomposition and Partitioning Methods for Stochastlc
Linear Programs. Operations Research 33, 989-1007. :

J. R. BIRGE, M. A. H. DEMPSTER, H. 1./ GASSMANN, E. A. GUNN A
J. KiNG and S. W. WALLACE, 1987. A aridard Input Format for Multi-
period Stochastic Linear Programs. Committee on Algorithms Newsletter of
the Mathematical Programming Soaety 17, 1-19.

J. R. BirgE, C. J. DONOHUE, D. F. HOLMES and 0. G. SVINTSITSKI
1994. A Parallel Implementation of the Nested Decomposition Algorithm for
Multistage Stochastic Linear Programs. Techmcél Report 94-1, Department of
Industrial and Operations Engineering, Umversn;y of chhlgan, Ann Arbor,
MI.

J. R. BirGE and D. F. HoLMEs, 1992. Efficient Solﬁfié’n of TWo-Stage Stochas-
tic Linear Programs Using Interior-Point Methods. Computational Optimiza-
tion and Applications 1, 245-276.

J. R. BIrGE and L. Qt, 1988. Computing Block- Angular Karmarkar Projec-
tions with Applications to Stocha,stlc Programmmg Management Science 34,
1472-1479.

J. Czyzvk, R. FOURER and S. ‘MEHRQTRA, 1994. A Study of the Augmented
System and Column-Splitting Approaches for Solving Two-Stage Stochastic
Linear Programs by Interior-Point Methods. Technical Report 93-05, Depart-
ment of Industrial Engineering and Management Sciences, Northwestern Uni-
versity, Evanston, IL; to appear in ORSA Journal on Computing.

A. DE SILVA and D. ABRAMSON, 1994. Téch Report: CIT-94-4, School of
Computing and Information Technology, Griffith University, Nathan QLD 4111
Australia, .

Yu. ErMoLIEV and R. J.-B. WETS eds., 1988. Numerical Techniques for
Stochast:c Opt1m1zat10n Springer-Verlag, New York.

R. FOURER and S. MEHROTRA 1993 Solving Symmetric Indefinite Systems in
an Interlor-Pomt Method for Lmear Programming. Mathematical Programming
62, 15—39

[10] D.M. GAY 1985 Electromc Maal Distribution of Linear Programming Test

[y

[12]

_ Problems. Committee on Algorithms Newsletter 13, 10-12. Also Numerical
Analys1s Manuscript 86 0, AT&T Bell Laboratories, Murray Hill, NJ (1986). .

E. R. Jessup, D. YANG and S. A. ZENIOS, 1994. Parallel Factorization of
Structured Matrices Arising in Stochastic Programming. To appear in SIAM
Journal on Opt:m12at1on

1. J. LUSTIG R.E. MARSTEN and D. F. SHANNO, 1992. On Implementing
Mehrotra’s Predictor-Corrector Interior Point Method for Linear Programming.
SIAM Journal on Optimization 2, 435-449.

21

(13] 1. J. LusTiG, J.M. MULVEY and T. J. CARPENTER, 1991. Formulating Two-

Stage Stochastic Programs for Interior Point Methods. Operations Research
39, 757-770.

[14] S. MEHROTRA, 1992. On the Implementation of a Primal-Dual Interior Pdint
Method. SIAM Journal on Optimization 2, 575-601.

[15] R. J. VaNDERBEI and T. J. CARPENTER, 1993. Symmetric Indefinite Systems
for Interior-Point Methods. Mathematical Programming 58, 1-32.

(16] R. M. VAN SLvKE and R. J.-B. WETS, 1069. L-Shaped Linear Programs with
Applications to Optimal Control and Stochastic Programming. SIAM J. App.
Math 17, 638-663. . _

22

